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Application of fracture mechanics to 
plastics deformed at high strain-rates 

Part 2 Geometrical factors 

H. V. S Q U I R E S ,  P. E. REED 
Department of Materials, Queen Mary College, University of London, UK 

The effects of wall thickness and tube length on the fracture strength of thin walled 
cylindrical specimens of poly(methylmethacrylate) containing artificial flaws is examined. 
Data obtained are compared with that predicted by fracture mechanics theory developed 
for quasi-static conditions. Special attention is given to corrections for finite width and 
bending effects under dynamic loading conditions. It is concluded that the fracture 
mechanics relationships derived for quasi-static conditions, with the exception of the 
bending correction factor, are applicable to the dynamic situation with reasonable accuracy. 
It is further concluded that, for accurate analysis, the effect of dynamic loading on the 
stress field, and possibly the stress intensity factor, must be taken into consideration. 

1. Introduction 
Fracture mechanics is now applied to a variety of 
engineering problems to relate the applied stress 
to the maximum permissible flaw size. The 
relationship varies with the geometry of the item 
containing the flaw [1, 2], but generally takes the 
form 

cr = A a  - ~  (l) 

where ~ is the applied stress, a is the semi-crack 
length and A is a constant for a particular 
specimen geometry and testing condition. For  
a flat plate of infinite width containing a centre 
notch of length 2a, Equation 1 can take the form 

~ f  = K~c(~a)-§ (2) 
where KI c is the critical stress intensity factor and 
ef the fracture stress. Alternatively, the fracture 
criterion has been expressed by Griffith [3] as 

~rf \ Ira / (3) 

where E is the elastic modulus for the material 
and y the specific surface energy. Comparing 
Equations 2 and 3, it is seen t ha t / f i e  = (2E7) ~ 
for the particular case considered. Since both E 
and 7 are material parameters, it at first appeared 
that K i c  might be a universal constant. However, 
attempts to fit Equations 2 and 3 to experi- 
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mental data for most materials, especially 
plastics, showed that K i c  was both strain-rate 
[4] and specimen geometry dependent [1, 2], and 
that 7 was considerably larger than theoretically 
possible [5]. The fact that the "constants" in the 
equations are not universal emphasizes the need 
to test different specimen configurations under 
different conditions. 

A previous paper [6] commented on the 
fracture of thin walled cylindrical specimens of 
poly(methylmethacrylate) (PMMA) when sub- 
jected to internal shock pressure pulses. It was 
found that a function of the form 

e0 = \ ~ . a ]  -cfoo (4) 

fitted the experimental data for the hoop stress, 
e0, for fracture, and that the values of E and 7 
differed only slightly from those required to fit 
quasi-static data for the same material. Equation 
4 differs from the previous equations by the 
inclusion of the constant c~o. Practical considera- 
tions dictate that c~ 0 ~ 0 as a ~ oo and hence 
attempts were made to eliminate cr~ by applying 
finite width and bending correction factors, but 
without complete success. The previous work on 
shock loading of flawed PMMA tubes has now 
been extended to study the effects of varying the 
tube length and wall thickness on the fracture 
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behaviour. Williams and Ewing have reported 
on the application of fracture mechanics to 
cylindrical tubes subjected to quasi-static internal 
pressure [2]. They found that a relationship of 
the form 

( % = K@a) -~ 1 + 1.67~-~ (5) 

fitted their data, where [1 + 1.67(a2/Rt)] -~ was 
the bending correction factor theoretically 
derived by Folias [7]. 

2, Experimental 
Details of the technique used for impact testing 
the tubular specimens have been described 
previously [6, 8]. A shock tube is used to apply 
a step impulse to the specimen, which forms an 
integral part of the shock tube. The specimen is 
mounted so that it is essentially a freely sup- 
ported body. Under the action of the internal 
pressure pulse, the tube can expand radially 
along its entire length with minimal end re- 
straint. The artificial crack of length 2a is 
inserted in the specimen as shown in Fig. 1, by 
drilling a hole at one end of the intended crack 
and traversing the drill along a generator of the 
tube. The ends of the crack are then sharpened 
with a razor. The possible geometrical variables 
of the specimen are the length (W), crack length 
(2a) and the wall thickness (t). The internal 
radius (R) of the specimen is dictated by the 
size of the shock tube, since the bores of the 
specimen and shock tube must be identical to 
form a smooth continuation of each other. 

W 

I 2o 1 

Figure 1 Schematic of specimen geometry depicting the 
location of the artificially inserted flaw in the tube wall. 

Sets of PMMA specimens were machined, each 
set containing approximately fifteen specimens. 
The wall thickness and specimen length were 
held constant throughout each set while the 
crack lengths were varied to give crack length to 
specimen width ratios in the range 0.015 < 
2 a / W  <_ 0.75. Four sets were tested; three with 
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the specimen length constant at 50.8 mm but 
different thicknesses of 0.38, 0.762 and 1.525 
mm respectively, and the fourth of length 25.4 
mm and wall thickness 0.762 mm. The lower 
value of wall thickness used was dictated by 
machining limitations, while the upper limit was 
determined by the magnitude of the pressure 
pulses that could be obtained with the shock tube 
used which would fracture the thick walled tubes 
containing short cracks. The shock tube was 
operated in primary shock loading mode [8], i.e. 
the shock pulse travelling through the specimen 
once to exhaust. Each specimen was subjected 
to a sequence of shock pulses of increasing 
magnitude until fracture occurred. 

Since the ends of the specimen are open and 
unrestrained, the stress system acting in the 
flawed cylinders is considered to be pre- 
dominantly a unidirectional circumferential 
stress, %. For a thin walled cylinder of mean 
radius (R), wall thickness (t) subjected to an 
internal pressure (p), the circumferential stress is 
given by 

R 
% = P T "  (6) 

This equation is derived from equilibrium con- 
siderations and is strictly applicable only to 
membranes. It has been shown previously [6] 
that, when fracture propagates from the artificial 
crack, it initiates at the inside edge of that crack. 
The circumferential stress at the bore of a tube 
of finite thickness under internal pressure, again 
for equilibrium conditions, is given by the "thick 
wall cylinder" equation [9], 

(Ro 2 -4- Ri ~) 
~0 = P (Ro 2 _ Ri~) (7) 

where Ro and Ri are the external and internal 
radii of the specimen respectively. Values of % 
derived by Equation 7 were found to be �89 1 and 
2~o greater than those derived from Equation 6 
for the 0.38, 0.762 and 1.525 mm thick specimens, 
respectively. In the present paper, the small 
correction for finite tube thickness has been 
applied and hoop stresses quoted have been 
derived from Equation 7 before other correction 
factors are applied. 

3. Application of correction factors to 
impact data 

3.1. Fracture stress versus crack length 
Fig. 2 shows the variation of the hoop stress at 
fracture with crack length for all four sets of 
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specimens. The open symbols indicate fracture 
by the propagation of a single crack from the 
ends of the initial inserted crack. In such cases, 
the path of the fracture plane continued the 
inserted crack along a generator of the tube, and 
was therefore normal to the direction of the 
applied stress. This mode of fracture will be 
referred to as the single fracture mode. Filled 
symbols indicate that the specimen shattered at 
fracture into a large number of fragments. In 
such cases any attempt to relate the position of 
the fragments to the original inserted crack was 
impossible. There are three interesting features in 
Fig. 2. 

(a) The data for the different tube thicknesses 
and lengths is unified onto one master curve 
before any further correction factors are applied. 
Such scatter that does exist can be found in the 
data of any individual set. 

(b) A linear relationship exists between ao and 
(2a) -~ over a limited range of crack length, which 
does not extrapolate linearly to the origin (i.e 
a o = 0 at 2a = oo). Above a particular stress 
level ( ~  12 MN m -S) or, alternatively, below a 
certain crack length ( _  3.5 ram), the fracture 
stress is independent of artificial flaw size. 

(c) The transition from single fracture mode of 
failure to shattering occurs in the middle of the 

1'2 

Figure 2 Variation of fracture stress with 
(2a) -§ for all specimens tested (a0 is the 
maximum hoop stress derived from thick 
cylinder formulae). I / iZ  Tube length 50.8 
mm, wall thickness 0.38 mm; O/O tube 
length 50.8 mm, wall thickness 0.76 mm; 
T/V tube length 50.8 ram, wall thickness 
1.52 turn; A/~ tube length 25.4 mm, wall 
thickness 0.76 ram. Filled symbols indicate 
fragmentation; open symbols indicate single 
crack propagation. 

range in which %oc(2a)-L In an earlier paper 
[6], it was suggested that the transition in 
fracture mode might coincide with the change to 
constant fracture stress which is independent of 
crack length. Clearly this is not the case. Over the 
crack length range 0.3 < (2a) -~ < 0.5, the length 
of the inserted crack continues to influence the 
fracture stress, even though failure results in 
fragmentation. In this region it is considered that 
fracture must initiate at the artificial crack tip 
and then bifurcate to give rise to the fragmenta- 
tion. Once the crack length is less than 3.5 mm, 
fracture initiates away from the artificial crack~ 
possibly at the ends of the tube or, alternatively, 
generally throughout the body. 

3.2. Finite wid th  co r rec t i on  
Since the crack length/specimen length ratio 
reaches 0.75 for the largest cracks, finite width 
effects will occur, causing the observed fracture 
stresses to be lower than those required to cause 
fracture if the cracks were included in infinitely 
wide plates. For  an infinitely wide plate the 
critical stress intensity factor is given by 

gIc  = cre(~ra) § . (2) 

For  a plate of finite width, W, the plane strain 
stress intensity factor is given by [1 ], 
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KIC = Yafa ~ (8) 

where ae and crf are the respective uniaxial 
stresses required for fracture and where Y = ~r* 
+ 0.227 (2a/W) - 0.51 (2a/W) 2 + 2.7 (2a/W) 3. 
From Equations 2 and 8 it follows that ae/er = 
Y/~r ~. Hence, the effect of including the crack in a 
plate of finite width, W, is to reduce the average 
stress required for fracture by the factor Y/rr ~. 
Equation 8 was derived for flat plates. Its appli- 
cation in the present case to flawed tubes is due 
to the absence of the equivalent finite width 
correction for flawed tubes. As previously 
stated, the stress system in the present case is 
predominantly uniaxial and, therefore, very 
similar to that in the flat plate. Provided the 
tube diameter is sufficiently large (i.e. the plate 
curvature slight in the vicinity of the crack), it is 
considered that the finite width corrections will 
be similar to those for flat plates. 

Fig. 3 shows the fracture data of Fig. 2 
increased by the factor Y/Tr § a h is then the 
fracture stress for the equivalent infinite length 
tube containing the crack of length 2a. The 
same general pattern can be seen in both Figs. 2 
and 3. The extrapolated line at large crack 
lengths intersects the abscissa much closer to the 

origin in Fig. 3 than in Fig. 2, but still does not 
satisfy the condition cr = 0 when 2a = oo. 

Since the expression for Y is a power series in 
2a/W,  correction for finite width should be more 
marked in the case of the shorter specimens. In 
Fig. 2, the data for the short specimens (25.4 mm 
long, 0.762 mm thick) generally lie on or below 
the mean line drawn over the range 0 < (2a) -~ < 
0.5, while those for the 50.8 mm long, 0.762 mm 
thick tubes generally lie on or above the line. 
Correction for finite width causes these two sets 
of data to become superimposed on a common 
line (Fig. 3). 

The finite width correction applied to the 
impact data improves the normalization of the 
data but does not remove all the anomalies. 

3.3. Correction for bending e f f e c t s  

The internal pressure is a radial force acting on 
all parts of the tube. Well away from the crack, 
this radial force is restrained by the hoop stress. 
However, the radial forces acting along the edge 
of the crack bend the edges to give greater radial 
displacements than at other points of the tube. 
Bending further increases the local stress at the 
crack tip for a given nominal hoop stress. Hence 
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Figure 3 Variation of fracture stress 
with (2a) -~ when data presented in 
Fig. 2 are corrected for finite width 
effects. (Nomenclature for graphical 
symbols identical to those given with 
Fig. 2.) 
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Figure 4 Fracture stress data after appli- 
cation of the bending correction factor to 
data presented in Fig. 2. (Nomenclature 
for graphical symbols identical to those 
given with Fig. 2.) 

the fracture stress values shown in Fig. 3, due to 
the bending effect, will be lower than those 
required to fracture an infinitely wide flat plate. 
The stress intensity factor proposed by Folias for 
an internally pressurized tube containing an 
axial crack is 

Kzc=crf(~ra)  ~ 1 + 1 .67Rt]  " (5) 

Comparison of this equation with Equation 2 
shows that the mean stress, el2, required to 
fracture tile tube is a factor of (1 + 1 . 6 7 a 2 / R t )  § 

less than that required to fracture an infinitely 
wide flat plate containing the same crack. Hence 
increasing the fracture stress data in Fig. 3 by 
this factor should give the stresses required for 
fracture of the equivalent flat plate, and the 
data should then fit Equations 2 and 3 and 
extrapolate to the origin. 

Fig. 4 shows the fracture data given in Fig. 2 
(i.e. before finite width correction) corrected for 
bending effect. Fig. 5 shows the same fracture 
data corrected for both bending and finite width 
effects. It can be seen that applying the bending 
correction scatters the data and increases rather 
than reduces the anomalous effects. The line 
drawn in Fig. 4 merely reproduces that given in 
the previous publication for the 50.8 mm long, 
0.762 mm thick set of data, and is not intended 
to be a best fit to the data. Addition of the data 
for the other sets of specimens in Fig. 4 shows 
that no clear trends exist. Application of both 
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Figure 5 Fracture stress data after application of both 
finite width and bending correction factors to data 
presented in Fig. 2. (Nomenclature for graphical symbols 
identical to those given with Fig. 2.) 

finite width and bending correction factors in 
fact causes a reversal of the general trends as 
shown in Fig. 5. Curves A and B sketched in 
Fig. 5 show the manner in which the fracture 
stresses are predicted to vary with (2a) -§ in the 
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equivalent infinite plates of 0.38 and 1.525 mm 
thickness respectively. In the single fracture 
mode region, the fracture stresses vary con- 
siderably for the two thicknesses of plate and are 
predicted to d e c r e a s e  with decreasing crack size 
contrary to all fracture theory. 

It must be concluded that the bending correc- 
tion factor used, which was derived from 
equilibrium considerations, is not applicable 
under the dynamic conditions in the present 
tests. 

4. Discussion 
The internal pressure required to fracture the 
notched specimens is found to vary with the 
flaw size, tube thickness and, to a small degree, 
the tube length. By determining the fracture 
stress ~0, as given by either the thin or thick 
walled expressions for the hoop stress in a 
cylinder, the fracture data for all tube geometries 
studied can be presented on one master curve. It 
is then found that, over a limited range of crack 
lengths, the fracture stress obeys a relationship of 
the form 

cr o = A a  - ~  - B (9) 

where A and B are constants. This differs from 
the usual fracture mechanics equations, firstly in 
that the relationship only holds over a limited 
range of crack lengths and secondly by the 
inclusion of the constant B. Application of the 
finite width correction factor serves to normalize 
the data still further, especially the effect of tube 
length, and reduces the constant B by 40%. 
Further application of the bending correction 
factor to the fracture data under impulsive 
loading renders the data meaningless. It must be 
concluded that the bending correction factor 
quoted is not applicable under conditions of 
rapid loading. This may be due to the short time 
scale of the fracture event, which does not permit 
the bending deflections to reach the values 
predicted from equilibrium considerations. Con- 
sequently, the bending correction factor quoted 
over estimates the corrections to be applied. 

The expressions for the hoop stresses (Equa- 
tions 6 and 7) in an internally pressurized tube 
and the correction factors for finite width and 
bending are derived from equilibrium con- 
siderations. Furthermore, in applying the correc- 
tion factors, it has been assumed that the stress 
intensity factor is constant for the material 
under consideration. Since the application of the 
bending correction factor to the dynamic situa- 

1470 

tion has been questioned, the other expressions 
must also be briefly examined. 

Analysis of the deformation of an unnotched 
thin walled tube subjected to a travelling shock 
pulse shows that the strain following the applica- 
tion of the pulse follows a damped oscillatory 
mode, settling to the equilibrium value after a 
few cycles [10, 11]. The strain during the 
oscillatory mode can exceed the equilibrium 
value, as is verified by experiment [11, 12]. It 
then follows that, during the period of oscilla- 
tion, the hoop stress can exceed that predicted by 
equilibrium considerations. Hence the stresses 
derived from Equations 6 and 7 and shown in 
Fig. 2, underestimate the maximum hoop stress 
slightly. This reduction is transferred to all 
subsequent graphs and is one possible reason for 
the inability of the data, when (2a) -~ < 0.5, to 
extrapolate to the origin. 

It is known that the stress intensity factor is 
rate dependent [13], and that the circumferential 
strain-rate in the shock pressurized tube is finite 
and linearly related to wall thickness [8, 11 ]. It is, 
therefore, questionable whether the KIc values 
should be held constant as has been done in 
Section 3 to obtain the fracture stress for the 
equivalent infinitely wide flat plate. Provided 
data for equivalent strain rates is considered, 
then it seems reasonable to equate the KIc 
values. However, the decrease in circumferential 
strain-rate with increasing wall thickness sug- 
gests that a further correction could be applied to 
normalize the data for the effects of KIC varia- 
tion with strain rate. No such correction has 
been applied due to the absence of information 
on the effect of strain-rate on KIc for the mat- 
erial tested. 

5. Conclusions 
It is concluded that a relationship of the form 

(2E,/~ 
~ 0 =  \ T r a /  - ~  

fits the fracture data for the flawed tubes under 
dynamic loading conditions for a limited range 
of crack lengths (2a > 3.5 mm), regardless of 
whether the fracture mode is by single crack 
propagation or shattering. The relationship 
applies when fracture initiates at the inserted 
flaw. With crack lengths shorter than 3.5 mm, the 
hoop stresses generated by the larger shock 
pulses cause fracture initiation at sites other than 
the inserted crack. Consequently, the fracture 



A P P L I C A T I O N  OF F R A C T U R E  M E C H A N I C S  TO P L A S T I C S  D E F O R M E D  AT H I G H  S T R A I N - R A T E S :  P A R T  2 

stress is then independent of  inserted crack 
length. 

The relationship for a o is obeyed for a range o f  
tube thicknesses and length, where a 0 is deter- 
mined by the simple equilibrium equations for 
the h o o p  stress. As previously reported [6], the 
value of  the surface energy, ~,, is found to be 
almost  identical to that  determined f rom quasi- 
static testing o f  the same material. The necessity 
to include the constant  a~o is now considered to 
arise f rom the inability of  the expressions derived 
f rom equilibrium considerations to apply accu- 
rately to the dynamic  loading situation. This is 
especially true for  the bending correction factor  
applied. 
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